Enhanced Target Collision Resistant Hash Functions Revisited
نویسندگان
چکیده
Enhanced Target Collision Resistance (eTCR) property for a hash function was put forth by Halevi and Krawczyk in Crypto 2006, in conjunction with the randomized hashing mode that is used to realize such a hash function family. eTCR is a strengthened variant of the well-known TCR (or UOWHF) property for a hash function family (i.e. a dedicated-key hash function). The contributions of this paper are twofold. First, we compare the new eTCR property with the well-known collision resistance (CR) property, where both properties are considered for a dedicated-key hash function. We show there is a separation between the two notions, that is in general, eTCR property cannot be claimed to be weaker (or stronger) than CR property for any arbitrary dedicated-key hash function. Second, we consider the problem of eTCR property preserving domain extension. We study several domain extension methods for this purpose, including (Plain, Strengthened, and Prefix-free) Merkle-Damg̊ard, Randomized Hashing (considered in dedicated-key hash setting), Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear Hash (LH) methods. Interestingly, we show that the only eTCR preserving method is a nested variant of LH which has a drawback of having high key expansion factor. Therefore, it is interesting to design a new and efficient eTCR preserving domain extension in the standard model.
منابع مشابه
Collision-Resistant No More: Hash-and-Sign Paradigm Revisited
A signature scheme constructed according to the hash-andsign paradigm—hash the message and then sign the hash, symbolically σ(H(M))—is no more secure than the hash function H against a collision-finding attack. Recent attacks on standard hash functions call the paradigm into question. It is well known that a simple modification of the hash-and-sign paradigm may replace the collision-resistant h...
متن کاملDomain Extension for Enhanced Target Collision-Resistant Hash Functions
We answer the question of Reyhanitabar et al. from FSE’09 of constructing a domain extension scheme for enhanced target collisionresistant (eTCR) hash functions with sublinear key expansion. The eTCR property, introduced by Halevi and Krawczyk [1], is a natural fit for hashand-sign signature schemes, offering an attractive alternative to collisionresistant hash functions. We prove a new composi...
متن کاملA Generalization of PGV-Hash Functions and Security Analysis in Black-Box Model
In [1] it was proved that 20 out of 64 PGV-hash functions [2] based on block cipher are collision resistant and one-way-secure in blackbox model of the underlying block cipher. Here, we generalize the definition of PGV-hash function into a hash family and prove that besides the previous 20 hash functions we have 22 more collision resistant and one-way secure hash families. As all these 42 famil...
متن کاملPGV-Style Block-Cipher-Based Hash Families and Black-Box Analysis
In [1] it was proved that 20 of 64 PGV hash functions [2] based on block cipher are collision-resistant and one-way in the black-box model of the underlying block cipher. Here, we generalize the definition of PGV-hash function into a hash family and we will prove that, aside from the previously reported 20 hash functions, we have 22 more collision-resistant and one-way hash families. As all the...
متن کاملNon-interactive Manual Channel Message Authentication Based on eTCR Hash Functions
We present a new non-interactive message authentication protocol in manual channel model (NIMAP, for short) using the weakest assumption on the manual channel (i.e. assuming the strongest adversary). Our protocol uses enhanced target collision resistant (eTCR) hash family and is provably secure in the standard model. We compare our protocol with protocols with similar properties and show that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009